
Predicting neurological outcome in patients with a severe
postanoxic encephalopathy

Primary Topic: Data Mining, Secondary Topic: Time Series
Course: 2021-1B – Group: 89 – Submission Date: 2021-01-31

Adam Meijer
University of Twente

a.j.meijer@student.utwente.nl

Liselot Goris
University of Twente

l.c.goris@student.utwente.nl

ABSTRACT
Every year 176,000 patients in Europe are admitted to the intensive
care unit with a postanoxic coma after cardiac arrest, 40% of these
patients will progress into a vegetative state. Early prediction of
good or poor neurological outcome is important to provide the
right care for the patients. In this study a machine learning model
is designed to predict poor or good outcome (based on the cerebral
performance category score) from the 12 hours and 24 hours EEG
data of patients after cardiac arrest. Several classifiers were eval-
uated, the random forest classifier gave the best accuracy for this
dataset. In order to improve the accuracy of the model hyperparam-
eter tuning was applied. The k-best chi-square score was used for
feature selection. For the 12 hours data the highest accuracy was
reached with 26 features and for the 24 hours data the highest accu-
racy was reached with 35 features selected reaching an AUC score
of 0.854. For poor outcome the sensitivity was 33% at a specificity
of 100%, for good outcome the sensitivity was 34% at a specificity
of 95%. The 24 hours data did not have a significantly better out-
come. It was concluded that machine learning in combination with
qEEG is a promising tool for predicting good and poor outcome of
comatose patients after cardiac arrest, however the model should
be further improved before it can be used in practice.

KEYWORDS
qEEG features, machine learning, postanoxic coma

1 INTRODUCTION
Every year 176,000 patients in Europe are admitted to the Intensive
Care Unit with a postanoxic coma after cardiac arrest. 80% of the
patients who initially survive cardiac arrest are comatose, 40% of
these patients will progress into a vegetative state [7]. Early pre-
diction of neurological outcome is vital to prevent futile treatment
and to be able to provide the right care for patients with a high
probability of good recovery.
Electroencephologram (EEG) is the standard technique to deter-
mine cerebral activity. Machine learning might be helpful to predict
the outcome of the patient’s health. The goal of this project is to fit a
model to the EEG data to predict the patient’s health outcome based
on EEG features by using machine learning classifiers. The research
question would be: ‘How accurate is the machine learning model to
predict poor or good outcome from the EEG data of patients with a
postanoxic coma after cardiac arrest?’
The first goal is to find the right classifier for the data, thereafter it
will be investigated which features need to be selected to get the
highest accuracy in predicting good or poor outcome. The last goal

is to find out how the prediction changes when EEG data of differ-
ent hours after cardiac arrest is used, by evaluating the differences
between the area under the curve (AUC) of the 12 hours data and
the 24 hours data.

2 BACKGROUND
In this project the dataset is evaluated on various quantitative EEG
(qEEG) features to predict the neurological outcome. The Cerebral
Performance Category Score (CPC) is a score to evaluate the pa-
tient’s neurological outcome. Good outcome is characterised by a
CPC of 1 (good cerebral performance) and 2 (moderate cerebral dis-
ability), and bad outcome by a CPC of 3 (severe cerebral disability),
4 (coma or vegetative state) and 5 (brain death) [3].

Several earlier studies have been working on predicting neu-
rological outcome by using qEEG features and machine learning.
Tjepkema et al. (2013) [9] combined five qEEG features into a single
number, the Cerebral Recovery Index (CRI) to predict the neurolog-
ical outcome at 24 hours after cardiac arrest, this study came to a
sensitivity of 55% for poor outcome and 25% for good outcome at a
specificity of 100%. With this study it was shown that ‘Quantitative
EEG analysis can reduce the time needed to review long-term EEG
and makes the analysis more objective.’ [9] In a later study Tjep-
kema et al (2017) [8] used nine qEEG features for the prediction of
neurological outcome. In this study a sensitivity of 56% and 65% for
poor outcome and 63% and 58% for good outcome was reached, at a
specificity of 100% at 12 hours and 24 hours after cardiac arrest. [8]
A year later, Nagaraj et al (2018) [5] used forty-four qEEG features
in combination with a revised CRI and predicted poor outcome with
a sensitivity of 66% and 60%, and good outcome with a sensitivity
of 72% and 40%, at 12 hours and 24hours after cardiac arrest with a
specificity of 95%. [5]
The results of the studies mentioned above suggest that it is possi-
ble to efficiently monitor patient outcome after cardiac arrest with
qEEG features and machine learning algorithms.

3 APPROACH
3.1 Description of dataset
Two EEG datasets are used, one of 12 hours after cardiac arrest and
one of 24 hours after arrest. The datasets were provided by Prof. Dr.
ir. Michel J.A.M. van Putten. The datasets consist of the neurological
outcome of patients given by the CPC score, and 44 different EEG
features, a description is given in table 1. The CPC score is grouped
into two categories, good (CPC scores 1 and 2, denoted as 1) and
poor (CPC scores 3-5, denoted as 0). The features are either time

Conference’17, July 2017, Washington, DC, USA Adam Meijer and Liselot Goris

Feature name Domain Feature name Domain
1 Patient Outcome 24 Beta_tot Freq
2 Nonlinear Energy Time 25 Alpha_delta Freq
3 Activity Time 26 Theta_delta Freq
4 Mobility Time 27 Spindle_delta Freq
5 Complexity Time 28 Beta_delta Freq
6 RMS Amplitude Time 29 Alpha_theta Freq
7 Kurtosis Time 30 Spindle_theta Freq
8 Skewness Time 31 Beta_theta Freq
9 Mean AM Time 32 Fhtife1 Freq
10 Std AM Time 33 Fhtife2 Freq
11 Skew AM Time 34 Fhtife3 Freq
12 Kurt AM Time 35 Fhtife4 Freq
13 BSR Time 36 Sef Freq
14 Delta Freq 37 Df Freq
15 Theta Freq 38 Svd_ent Entropy
16 Alpha Freq 39 H_spec Entropy
17 Spindle Freq 40 SE Entropy
18 Beta Freq 41 Saen Entropy
19 Total Freq 42 Abs(renyi) Entropy
20 Delta_tot Freq 43 Abs(shan) Entropy
21 Theta_tot Freq 44 Perm_entr Entropy
22 Alpha_tot Freq 45 FD Entropy
23 Spindle_tot Freq

Table 1: qEEG features and domain

domain features, frequency domain features or entropy domain
features. The data is normalised before the classifiers are applied,
using the standard normalisation method:

Normalised data = 𝑑𝑎𝑡𝑎−𝑑𝑎𝑡𝑎𝑚𝑖𝑛

𝑑𝑎𝑡𝑎𝑚𝑎𝑥−𝑑𝑎𝑡𝑎𝑚𝑖𝑛

3.2 Explanation of classifiers
The datasets are processed using Python. To decide which classifier
to use to evaluate the data, different classifiers are tested and the
results are shown in a ROC curve. The classifiers used are:

• Decision Tree Classifier: uses a decision tree to go from
observations to a conclusion. The tree root is the start, where
the data is split on the feature that results in the largest
information gain. This process is repeated until the leaves
are pure. Overfitting should be prevented, which sometimes
results in impurity of the final leaves.

• Decision Tree plus Ada Boost Classifier: The AdaBoost de-
tects the weak points in the decision tree and fits a new
decision tree to improve performance [6].

• Support Vector Classifier (SVC): each data item is plotted as
a point in n-dimensional space (n is the number of features).
Classification is performed by finding the hyper-plane that
differentiates the two classes very well. The support vectors
are the coordinates of individual observations. The Support
Vector Classifier is the borderline which best segregates the
two classes. The classification of the SVC is accurate however
it suffers from a large amount of computation [4].

• Multi-layer Perceptron classifier: a classifier that relies on
an underlying Neural Network to perform the task of classi-
fication, in this case with 100 neurons in 100 hidden layers,
an ADAM optimiser and a ReLU activation function.

• Random forest classifier: a random forest is a combination
of decision trees where each tree depends on the values of a
random vector sampled independently, and with the same
distribution for all trees in the forest. A random forest cor-
rects for overfitting of the training set, which is an advantage
over the Decision Tree Classifier [1].

3.3 Feature selection
A random state of 42 is used for the random forest classifier
and when splitting the data into test and training sets.

Step 1: Hyperparameters. In order to tune the random forest
classifier, hyperparameter tuning is applied. With this tech-
nique the training data is split into cross validation values.
After splitting the datasets, the parameters of the classifier
will be randomly tested inside a range, and the parameters
that give the highest accuracy will be obtained. The hyper-
parameters that are used to tune the model are:

• Number of decision trees (n estimators)
• Maximum depth of the tree (max dept)
• Splitting criteria (criteria)
• Minimum number of samples required to be at a leaf node
(min samples leaf)

• Minimum number of samples required to split an internal
node (min samples split)

• Number of features to consider when looking for the best
split (max features)

To get the best parameters, a Random Hyperparameter Grid tech-
nique is be applied. The python SKlearn model called Randomized-
SearchCV is used for this. The cross validation value is set to 2 and
the number of iterations to 200. To avoid overfitting, the decision
tree is pruned, the value for max dept of the decision tree is set to
15, higher values cause overfitting.

Step 2: Feature selection using k-best chi-square. Since the dataset
contains 44 different features a feature selection method is applied
to select the best features for classification. For each feature a chi-
square score is calculated and sorted from high to low. Thereafter,
these features are used to train the random forest classifier. Starting
with only the best feature, following with the best and second
best, up to selecting all features. For each iteration the accuracy
is measured to display how many features, ordered on chi-square
score, give the highest accuracy.

4 EXPERIMENTS
4.1 Results of different classifiers (ROC curves)
The ROC curves of the five different classifiers is shown in figure
1. The area under the curve (AUC) is 0.72 for the decision tree
classifier, 0.83 for the SVC, 0.83 for the MLP classifier, 0.84 for the

Predicting neurological outcome in patients with a severe postanoxic encephalopathy Conference’17, July 2017, Washington, DC, USA

Figure 1: ROC curves of different classifiers

AdaBoostClassifier and 0.91 for the random forest classifier. Based
on these results we choose to use the Random Forest Classifier.

4.2 Results of feature selection
Based on the results of the hyperparameter technique, optimal
values for the random forest classifier are found for both 12 hour
and 24 hour data separate. Hyperparameter tuning improved the
accuracy only by a small fraction, but it gave good ranges about
which parameters to change and by how much. To get the optimal
results the parameters are further tuned by hand, resulting in the
following values. For the 12 hour data, the criterion is set to entropy.
The minimal samples in a leaf to 1 and the minimal samples to split
an internal node is set to 15. The max dept of a tree is set to 15,
the number of decision trees is set to 150 and the maximal features
is set to log2. For the 24 hour data, the number of decision trees,
max dept of a tree, maximal features, minimal samples in a leaf and
minimal samples to split a node are set to the same values of the 12
hour data. Only one parameter differs, the criterion is set to gini
index. With these parameters the accuracy of the random forest
classifier improved from 78% till 81%.

Figure 2 shows graphs of the k-best features for the random
forest classifier. For both 12 hour and 24 hour data the accuracy
does not exceed 80%. With 26 features selected the highest accuracy
is achieved for the 12 hour data, see table 2. The highest accuracy
for the 24 hours data is achieved with 35 features selected, see table
3.

4.3 Results of 12 hours and 24 hours data
For the 12 hour data the AUC value is 0.854 and for 24 hour data
the AUC is 0.855. Looking at figure 4, for poor outcome at a 100%
specificity, the sensitivity is 33%. For good outcome, shown in figure
3, at a specificity 95% the sensitivity is 34%.

Looking at figure 6, for the 24 hour data and a poor outcome
at 100% specificity, the sensitivity is 13% and for good outcome,
shown in figure 5, at a specificity 95% the sensitivity is 38%.

These ROC curves were obtained with the random forest classi-
fier, by combining chi-square feature selection and hyperparameter
tuning. For the 12 hour data 26 features were selected and for the
24 hour data 35 features were selected.

Feature name Feature name
1 BSR 24 SkewAM
2 MeanAM 25 Beta_tot
3 Activity 26 Abs(renyi)
4 Total
5 Nonlinear Energy
6 Alpha
7 stdAM
8 KurtAM
9 Theta
10 Abs(shan)
11 Delta
12 RMS Amplitude
13 Fhtife4
14 Beta_theta
15 Kurtosis
16 Beta_delta
17 Fhtife2
18 Df
19 Fhtife1
20 Spindle
21 Spindle_delta
22 Spindle_theta
23 Skewness

Table 2: Highest chi-square features of 12 hour data

Feature name Feature name
1 stdAM 24 Beta
2 BSR 25 Beta_tot
3 Abs(shan) 26 Alpha_theta
4 KurtAM 27 Abs(renyi)
5 Kurtosis 28 Theta_delta
6 Theta 29 Theta_tot
7 Beta_theta 30 Mobility
8 Fhtife4 31 Spindle_tot
9 MeanAM 32 H_spec
10 Skewness 33 FD
11 RMS Amplitude 34 Alpha_delta
12 SkewAM 35 Fhtife3
13 Total
14 Fhtife2
15 Activity
16 Beta_delta
17 Spindle_theta
18 Alpha
19 Nonlinear energy
20 Delta
21 Fhtife1
22 Spindle_delta
23 Df

Table 3: Highest chi-square features of 24 hour data

Conference’17, July 2017, Washington, DC, USA Adam Meijer and Liselot Goris

Figure 2: Graph of the accuracy prediction for 12 hours data (left) and 24 hours data (right) on the k-best chi-square selected features

Figure 3: ROC curve of good outcome, 12hour data

Figure 4: ROC curve of poor outcome, 12hour data

Figure 5: ROC curve of good outcome, 24hour data

Figure 6: ROC curve of poor outcome, 24hour data

Predicting neurological outcome in patients with a severe postanoxic encephalopathy Conference’17, July 2017, Washington, DC, USA

5 DISCUSSION
The experiments show that the random forest classifier performs
best with our dataset (AUC = 0.84), the random forest model min-
imises overfitting. It must be said that the performances of the Ad-
aBoost, SVC and the MLP were very close to the random forest. The
fact that the performances of these classifiers were so close to each
other around an AUC of 0.83/0.84 most likely means that the data
has a certain amount of variance that cannot be overcome by these
classifiers. More data would help to reduce variance and a classifier
with more predictive power could improve the performance as well.

The results of our model show a relatively low sensitivity (about
34%) with a specificity of 100%, the sensitivity should be improved
before the model can be used in practice. Improvements can come
from training the model with more data or give weights to cer-
tain features that are more important. Earlier studies ([5], [8], [9])
combined qEEG features in a single number, the Cerebral Recovery
Index (CRI), to quantify and grade EEG data of patients after cardiac
arrest and assist in prediction of both poor and good outcome. A
similar number like the CRI could be used which is calculated by
giving qEEG features different weights depending on their impor-
tance for predicting neurological outcome, and thereby increasing
the accuracy of the prediction.

The AUC score for 12 hour data and 24 hour data is roughly the
same, respectively 0.854 and 0.855. An AUC performance of 0.85
is pretty decent, a value between 0.80 and 0.90 is seen as good [2].
The highest AUC score is gained by combining the chi-square fea-
ture selection method with hyperparameter tuning of the random
forest classifier. The hyperparameter tuning gave an accuracy of
81%. This was an increase of 3% relative to the standard parameters.
Adding feature selection increased the AUC with 0.01. However,
with only 20 features selected the results are already close to max-
imal performance. Therefore, it is not fully necessary to use all
44 features, since they improve the prediction with a very small
fraction. Especially when it is complicated and more expensive to
obtain certain features, it is sufficient to only use 20 features and
already get good results.

Looking at the 20 highest chi-square features, the feature called
stdAM is clearly the best feature. This is a time domain feature, the
time domain features predominate the the top 20. The most impor-
tant entropy feature is the calculated Shannon entropy (Abs(shan))
and the most important frequency feature is the calculated beta
theta. The most prominent difference between both highest scoring
features of the highly important features calculated with chi-square
and those calculated with random forest, is that the stdAM is by far
the most important chi-square feature in the 24 hour data, but it
does not score high for random forest. It is likely that the improve-
ment of the AUC with chi-square feature selection goes along with
selecting this feature as important, since the other features largely
correspond. For the 12 hour data the time domain feature meanAM
is very important and does not score high for random forest.

It can be concluded that making an EEG 12 hours after cardiac
arrest is sufficient to predict neurological outcome, an extra EEG

after 24h is not necessary, since the performance of both datasets
are roughly the same. Predicting the outcome in an early stage is
favourable for the patient and his/her loved ones, as it will sooner
be clear what the outcome will be, and care for the patient can be
adjusted based on the outcome.

6 CONCLUSION
In this project a random forest classifier model was used to predict
neurological outcome in comatose patients after cardiac arrest. The
model was tuned by selecting the hyperparameters that gave the
highest accuracy. After k-best chi-square feature selection it could
be concluded that only after selecting 26 features in the 12 hour
data the highest accuracy was already achieved. For the 24 hours
data this accuracy was reached with 35 features. By combining
hyperparameter tuning and feature selection, the highest accuracy
was reached, the model accuracy was roughly the same for the
12 hours and 24 hours data. All in all, this study gives promising
results for the use of machine learning for predicting good and
poor outcome of comatose patients after cardiac arrest based on
EEG, however the model should be further improved before it can
be used in practice.

REFERENCES
[1] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[2] Thomas G andMDTape. 2001. Interpreting Diagnostic Tests. University of Nebraska

Medical Center. https://doi.org/10.7326/0003-4819-135-1-200107030-00043
[3] Erich L Kiehl, Alex M Parker, Ralph M Matar, Matthew F Gottbrecht, Michelle C

Johansen, Mark P Adams, Lori A Griffiths, Steven P Dunn, Katherine L Bidwell,
Venu Menon, et al. 2017. C-GRA pH: A Validated Scoring System for Early Stratifi-
cation of Neurologic Outcome After Out-of-Hospital Cardiac Arrest Treated With
Targeted Temperature Management. Journal of the American Heart Association 6,
5 (2017), e003821.

[4] KW Lau and QH Wu. 2003. Online training of support vector classifier. Pattern
Recognition 36, 8 (2003), 1913–1920.

[5] Sunil B Nagaraj, Marleen C Tjepkema-Cloostermans, Barry J Ruijter, Jeannette
Hofmeijer, and Michel JAM van Putten. 2018. The revised Cerebral Recovery
Index improves predictions of neurological outcome after cardiac arrest. Clinical
neurophysiology 129, 12 (2018), 2557–2566.

[6] Robert E Schapire. 2013. Explaining adaboost. In Empirical inference. Springer,
37–52.

[7] Mario Stanziano, Carolina Foglia, Andrea Soddu, Francesca Gargano, and Michele
Papa. 2011. Post-anoxic vegetative state: imaging and prognostic perspectives.
Functional neurology 26, 1 (2011), 45.

[8] Marleen C Tjepkema-Cloostermans, Jeannette Hofmeijer, Albertus Beishuizen,
Harold W Hom, Michiel J Blans, Frank H Bosch, and Michel JAM Van Putten. 2017.
Cerebral recovery index: reliable help for prediction of neurologic outcome after
cardiac arrest. Critical care medicine 45, 8 (2017), e789–e797.

[9] Marleen C Tjepkema-Cloostermans, Fokke B van Meulen, Gjerrit Meinsma, and
Michel JAM van Putten. 2013. A Cerebral Recovery Index (CRI) for early prognosis
in patients after cardiac arrest. Critical care 17, 5 (2013), 1–11.

https://doi.org/10.7326/0003-4819-135-1-200107030-00043

Conference’17, July 2017, Washington, DC, USA Adam Meijer and Liselot Goris

A PYTHON SCRIPT

1 # −∗− cod ing : u t f −8 −∗−
2 " " " Programming_Project_EEG
3

4 Au toma t i c a l l y g ene r a t ed by Co l abo r a t o ry .
5

6 Or i g i n a l f i l e i s l o c a t e d a t
7 h t t p s : / / c o l a b . r e s e a r c h . goog l e . com / d r i v e

/ 1 7 cSeAj0ecueWVKIvAP66gGIPj8ZR0O −n
8 " " "
9

10 # Commented out IPython magic to ensure
Python c omp a t i b i l i t y .

11 impor t pandas as pd
12 impor t numpy as np
13 from i t e r t o o l s impor t c y c l e
14 impor t s eaborn as sns
15

16 # s k l e a r n
17 from s k l e a r n impor t d a t a s e t s
18 from s k l e a r n impor t me t r i c s
19 from s k l e a r n . me t r i c s impor t RocCurveDisp lay
20 from s k l e a r n . d a t a s e t s impor t

m a k e _ c l a s s i f i c a t i o n
21 from s k l e a r n . decompos i t i on impor t PCA
22 from s k l e a r n . p r e p r o c e s s i n g impor t

S t a n d a r d S c a l e r
23 from s k l e a r n . me t r i c s impor t p l o t _ r o c _ c u r v e
24 from s k l e a r n . svm impor t SVC
25 from s k l e a r n . t r e e impor t

D e c i s i o n T r e e C l a s s i f i e r
26 from s k l e a r n . me t r i c s impor t a c cu r a cy_ s co r e ,

roc_curve , auc , p r e c i s i o n _ r e c a l l _ c u r v e ,
a v e r a g e _ p r e c i s i o n _ s c o r e

27 from s k l e a r n . mod e l _ s e l e c t i o n impor t
t r a i n _ t e s t _ s p l i t , S t r a t i f i e d K F o l d

28 from s k l e a r n . ensemble impor t
R a nd omFo r e s tC l a s s i f i e r

29 from s k l e a r n . ensemble impor t
A d aB o o s t C l a s s i f i e r

30 from s k l e a r n . neura l_ne twork impor t
MLPC l a s s i f i e r

31 from s k l e a r n . mod e l _ s e l e c t i o n impor t
t r a i n _ t e s t _ s p l i t

32 from s k l e a r n . me t r i c s impor t c on f u s i on_ma t r i x
33 from s k l e a r n . f e a t u r e _ s e l e c t i o n impor t

S e l e c t KB e s t
34 from s k l e a r n . f e a t u r e _ s e l e c t i o n impor t ch i 2
35 from s k l e a r n . ensemble impor t

E x t r a T r e e s C l a s s i f i e r
36

37 from s k l e a r n . me t r i c s impor t
c l a s s i f i c a t i o n _ r e p o r t

38 from s k l e a r n . mod e l _ s e l e c t i o n impor t
GridSearchCV

39

40 # from a c c s t a t s impor t c on f u s i on_ma t r i x
41

42 # m a t p l o t l i b
43 impor t m a t p l o t l i b . pyp l o t as p l t
44 from ma t p l o t l i b . c o l o r s impor t cnames
45

46 # %ma t p l o t l i b i n l i n e
47

48 from goog l e . c o l a b impor t d r i v e
49 d r i v e . mount (' / c on t en t / d r i v e ')
50

51 " " " Loading da t a " " "
52

53 da t a 12 = pd . r e ad_c sv (' / c on t en t / d r i v e / MyDrive
/ Da t a_Sc i ence / P r o j e c t / fea turesNEW_12hrs .
c sv ' , sep= ' ; ' , d e c ima l = ' , ')

54 da t a 24 = pd . r e ad_c sv (' / c on t en t / d r i v e / MyDrive
/ Da t a_Sc i ence / P r o j e c t / fea turesNEW_24hrs .
c sv ' , sep= ' ; ' , d e c ima l = ' , ')

55 data_combined = pd . conca t ([da ta12 , d a t a 24])
56

57 # Normal i ze da t a
58 no rma l i z e d_da t a 1 2 = (da ta12 − da t a 12 . min ()) / (

d a t a 12 . max () − da t a 12 . min ())
59 no rma l i z e d_da t a 2 4 = (da ta24 − da t a 24 . min ()) / (

d a t a 24 . max () − da t a 24 . min ())
60 norma l i z ed_da ta_comb ined = (data_combined −

data_combined . min ()) / (da ta_combined . max
() −data_combined . min ())

61

62 # s e l e c t the da t a to be used ,
no rma l i z ed_da t a12 , no rma l i z ed_da t a24 ,
norma l i z ed_da ta_comb ined

63 da t a = no rma l i z ed_da t a 1 2
64

65 outcome_y = da t a [' P a t i e n t Outcome ']
66 f e a t u r e s _X = da t a . l o c [: , d a t a . columns != '

P a t i e n t Outcome ']
67 t a rge t_names = l i s t (d a t a . columns)
68

69 # f e a t u r e s _X [' Non l inea r energy ']
70

71 # t r a i n t e s t s p l i t the da t a (X , y)
72 X_tra in , X_ te s t , y _ t r a i n , y _ t e s t =

t r a i n _ t e s t _ s p l i t (f e a tu r e s_X , outcome_y ,
t e s t _ s i z e = 0 . 3 , r andom_s ta t e =42) # ,
r andom_s ta t e =42

Predicting neurological outcome in patients with a severe postanoxic encephalopathy Conference’17, July 2017, Washington, DC, USA

73

74 #some con f i d en c e i n t e r v a l
75 # sns . l i n e p l o t (d a t a =data , c i =95)
76

77 " " " F i t d i f f e r e n t c l a s s i f i e r s to the da t a " " "
78

79 # f i t random f o r e s t c l a s s i f i e r
80 r f _ c l f = R andomFo r e s tC l a s s i f i e r (r andom_s ta t e

=42)
81 r f _ c l f . f i t (X_ t ra in , y _ t r a i n)
82

83 # f i t SVC c l a s s i f i e r
84 svc = SVC (random_s ta t e =42)
85 svc . f i t (X_ t ra in , y _ t r a i n)
86

87 # f i t De c i s i on t r e e c l a s s i f i e r
88 d t _ c l f = D e c i s i o n T r e e C l a s s i f i e r (r andom_s ta t e

=42)
89 d t _ c l f . f i t (X_ t ra in , y _ t r a i n)
90

91 # f i t AdaBoost c l a s s i f i e r
92 a d b _ c l f = Ad aB o o s t C l a s s i f i e r (r andom_s ta t e

=42)
93 a d b _ c l f . f i t (X_ t ra in , y _ t r a i n)
94

95 # f i t MLP c l a s s i f i e r
96 mlp_ c l f = MLPC l a s s i f i e r (r andom_s ta t e =42)
97 mlp_ c l f . f i t (X_ t ra in , y _ t r a i n)
98

99 y_pred = r f _ c l f . p r e d i c t (X_ t e s t)
100

101 " " " ROC curve s o f the da t a us ing d i f f e r e n t
c l a s s i f i e r s " " "

102

103 " " " S t r a i g h t f o rw a r d ROC curve " " "
104 ax = p l t . gca ()
105 r f c _ d i s p = p l o t _ r o c _ c u r v e (r f _ c l f , X_ te s t ,

y _ t e s t , ax=ax , a lpha = 0 . 8)
106 s v c _ d i s p = p l o t _ r o c _ c u r v e (svc , X_ te s t ,

y _ t e s t , ax=ax , a lpha = 0 . 8)
107 d t _ c l f = p l o t _ r o c _ c u r v e (d t _ c l f , X_ te s t ,

y _ t e s t , ax=ax , a lpha = 0 . 8)
108 a d b _ c l f = p l o t _ r o c _ c u r v e (a db_ c l f , X_ te s t ,

y _ t e s t , ax=ax , a lpha = 0 . 8)
109 mlp_ c l f = p l o t _ r o c _ c u r v e (mlp_c l f , X_ te s t ,

y _ t e s t , ax=ax , a lpha = 0 . 8)
110 p l t . show ()
111

112 p r i n t (r f c _ d i s p)
113

114 " " " Hyperparameter tun ing o f the random
f o r e s t c l a s s i f i e r " " "

115

116 from s k l e a r n . mod e l _ s e l e c t i o n impor t
RandomizedSearchCV

117 # Number o f t r e e s in random f o r e s t
118 n_ e s t ima t o r s = [i n t (x) f o r x in np . l i n s p a c e (

s t a r t = 10 , s t op = 200 , num = 20)]
119 # Number o f f e a t u r e s to c on s i d e r a t every

s p l i t
120 max_ f ea tu r e s = [' au to ' , ' s q r t ' , ' l o g2 ']
121 # Maximum number o f l e v e l s in t r e e
122 max_depth = [i n t (x) f o r x in np . l i n s p a c e (1 0 ,

1 10 , num = 11)]
123 max_depth . append (None)
124 # Minimum number o f samples r e q u i r e d to

s p l i t a node
125 min_ s amp l e s _ s p l i t = [5 , 1 0 , 15]
126 # Minimum number o f samples r e q u i r e d a t each

l e a f node
127 min_samp l e s _ l e a f = [1 , 2 , 4 , 6 , 8]
128 # Method o f s e l e c t i n g samples f o r t r a i n i n g

each t r e e
129 b o o t s t r a p = [True , F a l s e]
130

131 c r i t e r i o n = [' g i n i ' , ' en t ropy ']
132

133 # Crea t e the random g r i d
134 random_grid = { ' n _ e s t ima t o r s ' : n _ e s t ima to r s ,
135 ' max_ f ea tu r e s ' : max_ fea tures ,
136 ' max_depth ' : [5 , 1 0] ,
137 ' m i n _ s amp l e s _ s p l i t ' :

m in_ s amp l e s _ sp l i t ,
138 ' m in_ s amp l e s _ l e a f ' :

m in_samp le s_ l ea f ,
139 ' b o o t s t r a p ' : b oo t s t r ap ,
140 ' c r i t e r i o n ' : c r i t e r i o n }
141 p r i n t (random_grid)
142

143 # Use the random g r i d to s e a r ch f o r b e s t
hype rpa rame te r s

144 # Random sea r ch o f parameter s , u s ing 2 f o l d
c r o s s v a l i d a t i o n ,

145 # s e a r ch a c r o s s 100 d i f f e r e n t combina t ions ,
and use a l l a v a i l a b l e c o r e s

146 r f_hyp = RandomFo r e s tC l a s s i f i e r (r andom_s ta t e
=42)

147

148 r f_random = RandomizedSearchCV (e s t im a t o r =
rf_hyp , p a r am_d i s t r i b u t i o n s =
random_grid , n _ i t e r = 200 , cv = 2 ,
v e rbo se =2 , r andom_s ta t e =42 , n_ j ob s = −1)

149 # F i t the random sea r ch model
150 r f_random . f i t (X_ t ra in , y _ t r a i n)

Conference’17, July 2017, Washington, DC, USA Adam Meijer and Liselot Goris

151

152 r f_random . bes t_params_
153

154 " " " C r e a t i ng C l a s s i f i c a t i o n Repo r t s " " "
155

156 de f e v a l u a t e (model , t e s t _ f e a t u r e s ,
t e s t _ l a b e l s) :

157 p r e d i c t i o n s = model . p r e d i c t (
t e s t _ f e a t u r e s)

158 CM = con fu s i on_ma t r i x (t e s t _ l a b e l s ,
p r e d i c t i o n s)

159 CR = c l a s s i f i c a t i o n _ r e p o r t (t e s t _ l a b e l s ,
p r e d i c t i o n s)

160 p r i n t (' Per formance ')
161 p r i n t (CM)
162 p r i n t (CR)
163 r e t u r n
164

165 r f _ c l f . f i t (X_ t ra in , y _ t r a i n)
166 ba s e_a c cu r a cy = e v a l u a t e (r f _ c l f , X_ te s t ,

y _ t e s t)
167

168 best_random = rf_random . b e s t _ e s t im a t o r _
169 p r i n t (r f_random . bes t_params_)
170 random_accuracy = e v a l u a t e (best_random ,

X_tes t , y _ t e s t)
171

172 r f _ b e s t = R andomFo r e s tC l a s s i f i e r (
n _ e s t ima t o r s =150 , m in_ s amp l e s _ l e a f =1 ,
m i n _ s amp l e s _ s p l i t =15 , max_depth =10 ,
max_ f ea tu r e s = ' l og2 ' , c r i t e r i o n = ' en t ropy '
, r andom_s ta t e =42)

173 r f _ b e s t . f i t (X_ t ra in , y _ t r a i n)
174 b e s t _ a c c u r a c y = e v a l u a t e (r f _ b e s t , X_ te s t ,

y _ t e s t)
175

176 from s k l e a r n . ensemble impor t
R a nd omFo r e s tC l a s s i f i e r

177 r f _ b e s t = R andomFo r e s tC l a s s i f i e r (
n _ e s t ima t o r s =150 , m in_ s amp l e s _ l e a f =1 ,
m i n _ s amp l e s _ s p l i t =15 , max_depth =15 ,
max_ f ea tu r e s = ' l og2 ' , c r i t e r i o n = ' en t ropy '
, r andom_s ta t e =42)

178 r f _ b e s t . f i t (X_ t ra in , y _ t r a i n)
179

180 # ge t the p r o b a b i l i t y d i s t r i b u t i o n
181 probas = r f _ b e s t . p r e d i c t _ p r o b a (X_ t e s t)
182 # ge t f a l s e and t r u e p o s i t i v e r a t e s
183 fp r , tp r , _ = ro c_cu rve (y _ t e s t , p robas [: , 1] ,

p o s _ l a b e l =1)
184

185 # ge t a r e a under the curve

186 roc_auc = auc (fpr , t p r)
187

188 # PLOT ROC curve
189 p l t . f i g u r e (dp i =150)
190 p l t . p l o t (fp r , tp r , lw =1 , c o l o r = ' green ' ,

l a b e l = f 'AUC = { roc_auc : . 3 f } ')
191 p l t . p l o t ([0 , 1] , [0 , 1] , ' −−k ' , lw = 0 . 5 , l a b e l =

' Random ')
192 p l t . t i t l e ('ROC Curve f o r RF c l a s s i f i e r ')
193 p l t . x l a b e l (' F a l s e P o s i t i v e Rate ')
194 p l t . y l a b e l (' True P o s i t i v e Rate ')
195 p l t . x l im ([− 0 . 0 5 , 1 . 0 5])
196 p l t . y l im ([− 0 . 0 5 , 1 . 0 5])
197 p l t . l egend ()
198 p l t . show ()
199

200 # ge t the p r o b a b i l i t y d i s t r i b u t i o n
201 probas = r f _ b e s t . p r e d i c t _ p r o b a (X_ t e s t)
202 # ge t f a l s e and t r u e p o s i t i v e r a t e s
203 fp r , tp r , _ = ro c_cu rve (y _ t e s t , p robas [: , 0] ,

p o s _ l a b e l =0)
204

205 # ge t a r e a under the curve
206 roc_auc = auc (fpr , t p r)
207

208 # PLOT ROC curve
209 p l t . f i g u r e (dp i =150)
210 p l t . p l o t (fp r , tp r , lw =1 , c o l o r = ' green ' ,

l a b e l = f 'AUC = { roc_auc : . 3 f } ')
211 p l t . p l o t ([0 , 1] , [0 , 1] , ' −−k ' , lw = 0 . 5 , l a b e l =

' Random ')
212 p l t . t i t l e ('ROC Curve f o r RF c l a s s i f i e r ')
213 p l t . x l a b e l (' F a l s e P o s i t i v e Rate ')
214 p l t . y l a b e l (' True P o s i t i v e Rate ')
215 p l t . x l im ([− 0 . 0 5 , 1 . 0 5])
216 p l t . y l im ([− 0 . 0 5 , 1 . 0 5])
217 p l t . l egend ()
218 p l t . show ()
219

220 " " " Chi − squa re f e a t u r e s e l e c t i o n " " "
221

222 # app ly S e l e c t KB e s t c l a s s to e x t r a c t top 10
b e s t f e a t u r e s

223 max_ f ea tu r e s = l en (f e a t u r e s _X)
224

225 X = abs (X_ t r a i n) # independen t columns
226 y = y _ t r a i n # t a r g e t column i . e p r i c e

range
227

228 f e a t u r e _ l i s t = []
229 f o r i i n range (1 , 4 5) :

Predicting neurological outcome in patients with a severe postanoxic encephalopathy Conference’17, July 2017, Washington, DC, USA

230 # app ly S e l e c t KB e s t c l a s s to e x t r a c t top 10
b e s t f e a t u r e s

231 b e s t f e a t u r e s = S e l e c t KB e s t (s c o r e _ f un c = ch i2
, k= i)

232 f i t = b e s t f e a t u r e s . f i t (X , y)
233 d f s c o r e s = pd . DataFrame (f i t . s c o r e s _)
234 dfco lumns = pd . DataFrame (X . columns)
235

236 # conca t two da t a f r ames f o r b e t t e r
v i s u a l i z a t i o n

237 f e a t u r e S c o r e s = pd . conca t ([dfcolumns ,
d f s c o r e s] , a x i s =1)

238 f e a t u r e S c o r e s . columns = [' Specs ' , ' S co re ']
#naming the da t a f r ame columns

239

240 b e s t _ f e a t u r e s = f e a t u r e S c o r e s . n l a r g e s t (i , '
S co re ') . Specs

241 # p r i n t (X_ t r a i n [b e s t _ f e a t u r e s])
242 r f _ c l f . f i t (X_ t r a i n [b e s t _ f e a t u r e s] , y _ t r a i n

)
243 y_pred = r f _ c l f . p r e d i c t (X_ t e s t [

b e s t _ f e a t u r e s])
244

245 CR_d ic t = c l a s s i f i c a t i o n _ r e p o r t (y _ t e s t ,
y_pred , o u t p u t _ d i c t =True)

246 f e a t u r e _ l i s t . append (CR_d ic t [' a c cu r a cy '])
247

248 b e s t _ f e a t u r e _ n = f e a t u r e _ l i s t . i ndex (max (
f e a t u r e _ l i s t))

249 p r i n t (' Number o f f e a t u r e s f o r b e s t
per formance : ' , b e s t _ f e a t u r e _ n)

250

251 p l t . p l o t (f e a t u r e _ l i s t)
252 p l t . x l a b e l (' Number o f f e a t u r e s ')
253 p l t . y l a b e l (' Accuracy ')
254 # p l t . s a v e f i g (' k− be s t _24hour . png ')
255 p l t . show ()
256

257 n _ f e a t u r e s = b e s t _ f e a t u r e _ n
258

259 p r i n t (f e a t u r e S c o r e s . n l a r g e s t (n _ f e a t u r e s , '
S co re ')) # p r i n t 10 b e s t f e a t u r e s

260 b e s t _ f e a t u r e s = f e a t u r e S c o r e s . n l a r g e s t (
n _ f e a t u r e s , ' S co re ') . Specs

261 # p r i n t (X_ t r a i n [b e s t _ f e a t u r e s])
262

263 " " " ROC curve s good and bad outcome , f e a t u r e
s e l e c t i o n and hyperpa rame te r s combined

264

265

266 " " "
267

268 r f _ b e s t = R andomFo r e s tC l a s s i f i e r (
n _ e s t ima t o r s =150 , m in_ s amp l e s _ l e a f =1 ,
m i n _ s amp l e s _ s p l i t =15 , max_depth =15 ,
max_ f ea tu r e s = ' l og2 ' , c r i t e r i o n = ' en t ropy '
, r andom_s ta t e =42)

269 r f _ b e s t . f i t (X_ t r a i n [b e s t _ f e a t u r e s] , y _ t r a i n)
270

271 # ge t the p r o b a b i l i t y d i s t r i b u t i o n
272 probas = r f _ b e s t . p r e d i c t _ p r o b a (X_ t e s t [

b e s t _ f e a t u r e s])
273 # ge t f a l s e and t r u e p o s i t i v e r a t e s
274 fp r , tp r , _ = ro c_cu rve (y _ t e s t , p robas [: , 1] ,

p o s _ l a b e l =1)
275

276 # ge t a r e a under the curve
277 roc_auc = auc (fpr , t p r)
278

279 # PLOT ROC curve
280 p l t . f i g u r e (dp i =150)
281 p l t . p l o t (fp r , tp r , lw =1 , c o l o r = ' green ' ,

l a b e l = f 'AUC = { roc_auc : . 3 f } ')
282 p l t . p l o t ([0 , 1] , [0 , 1] , ' −−k ' , lw = 0 . 5 , l a b e l =

' Random ')
283 p l t . t i t l e ('ROC Curve f o r RF c l a s s i f i e r ')
284 p l t . x l a b e l (' F a l s e P o s i t i v e Rate ')
285 p l t . y l a b e l (' True P o s i t i v e Rate ')
286 p l t . x l im ([− 0 . 0 5 , 1 . 0 5])
287 p l t . y l im ([− 0 . 0 5 , 1 . 0 5])
288 p l t . l egend ()
289 p l t . show ()
290

291 # ge t the p r o b a b i l i t y d i s t r i b u t i o n
292 probas = r f _ b e s t . p r e d i c t _ p r o b a (X_ t e s t [

b e s t _ f e a t u r e s])
293 # ge t f a l s e and t r u e p o s i t i v e r a t e s
294 fp r , tp r , _ = ro c_cu rve (y _ t e s t , p robas [: , 0] ,

p o s _ l a b e l =0)
295

296 # ge t a r e a under the curve
297 roc_auc = auc (fpr , t p r)
298

299 # PLOT ROC curve
300 p l t . f i g u r e (dp i =150)
301 p l t . p l o t (fp r , tp r , lw =1 , c o l o r = ' green ' ,

l a b e l = f 'AUC = { roc_auc : . 3 f } ')
302 p l t . p l o t ([0 , 1] , [0 , 1] , ' −−k ' , lw = 0 . 5 , l a b e l =

' Random ')
303 p l t . t i t l e ('ROC Curve f o r RF c l a s s i f i e r ')
304 p l t . x l a b e l (' F a l s e P o s i t i v e Rate ')
305 p l t . y l a b e l (' True P o s i t i v e Rate ')
306 p l t . x l im ([− 0 . 0 5 , 1 . 0 5])
307 p l t . y l im ([− 0 . 0 5 , 1 . 0 5])

Conference’17, July 2017, Washington, DC, USA Adam Meijer and Liselot Goris

308 p l t . l egend ()
309 p l t . show ()
310

311 " " " F e a t u r e impor tance " " "
312

313 model = R andomFo r e s tC l a s s i f i e r (r andom_s ta t e
=42)

314 model . f i t (X_ t ra in , y _ t r a i n)

315 # p l o t graph o f f e a t u r e impor t ance s f o r
b e t t e r v i s u a l i z a t i o n

316 f e a t _ impo r t a n c e s = pd . S e r i e s (model .
f e a t u r e _ impo r t an c e s _ , index=X . columns)

317 f e a t _ impo r t a n c e s . n l a r g e s t (1 8) . p l o t (k ind= '
barh ')

318 p l t . show ()

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Description of dataset
	3.2 Explanation of classifiers
	3.3 Feature selection

	4 Experiments
	4.1 Results of different classifiers (ROC curves)
	4.2 Results of feature selection
	4.3 Results of 12 hours and 24 hours data

	5 Discussion
	6 Conclusion
	References
	A Python script

